Tag Archive for: staging

Posts

Article of the Week: DSNB for Penile Cancer

Every Week the Editor-in-Chief selects an Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

If you only have time to read one article this week, it should be this one.

 

Dynamic sentinel lymph node biopsy for penile cancer: a comparison between 1- and 2-day protocols

Panagiotis Dimopoulos*, Panagiotis Christopoulos*, Sam Shilito, Zara Gall*, Brian Murby§, David Ashworth§, Ben Taylor, Bernadette Carrington, Jonathan Shanks**, Noel Clarke*, Vijay Ramani*, Nigel Parr*, Maurice Lau* and Vijay Sangar*

 

Departments of *Urology, §Nuclear Medicine, Radiology , **Pathology, The Christie Hospital, ManchesterMedical School, University of Manchester, Manchester, and Department of Urology, Royal Bolton Hospital, Bolton Lancashire, UK

Objective

To determine the outcome of clinically negative node (cN0) patients with penile cancer undergoing dynamic sentinel node biopsy (DSNB), comparing the results of a 1- and 2-day protocol that can be used as a minimal invasive procedure for staging of penile cancer.

Patients and Methods

This is a retrospective analysis of 151 cN0 patients who underwent DSNB from 2008 to 2013 for newly diagnosed penile cancer. Data were analysed per groin and separated into groups according to the protocol followed. The comparison of the two protocols involved the number of nodes excised, γ-counts, false-negative rates (FNR), and complication rates (Clavien–Dindo grading system).

JuneAOTW3

Results

In all, 280 groins from 151 patients underwent DSNB after a negative ultrasound ± fine-needle aspiration cytology. The 1-day protocol was performed in 65 groins and the 2-day protocol in 215. Statistically significantly more nodes were harvested with the 1-day protocol (1.92/groin) compared with the 2-day protocol (1.60/groin). The FNRs were 0%, 6.8% and 5.1%, for the 1-day protocol, 2-day protocol, and overall, respectively. Morbidity of the DSNB was 21.4% for all groins, and 26.2% and 20.1% for the 1-day and 2-day protocols, respectively. Most of the complications were of Clavien–Dindo Grade 1–2.

Conclusions

DSNB is safe for staging patients with penile cancer. There is a trend towards a 1-day protocol having a lower FNR than a 2-day protocol, albeit at the expense of a slightly higher complication rate.

Editorial: One Day Protocol for Early Penile Cancer – The Way to Go

The present article by Dimopoulos et al. [1] has some useful lessons on the development of new services. The authors have kept a detailed database of all patients going through their super-regional network, and have designed the protocol around the patient, whereby the primary and regional lymph nodes are dealt with in one visit. Previously, bilateral inguinal lymph node dissection (ILND) was so fraught with complications that it would not be combined routinely with organ-sparing surgery of the penis [2]; however, the significantly lower complication rate of dynamic sentinel node biopsy (DSNB) has allowed the more streamlined approach. The ‘only handle it once’ (OHIO) philosophy is surely not only preferable for the patient, but also reduces the risk of patients not receiving ideal management. In most cases, a biopsy at the time of presentation, along with physical examination/imaging, can determine those requiring DSNB instead of waiting for final pathology from the primary tumour. The controversy surrounding DSNB compared with ILND has been the false-negative rates. The pioneering group from the Netherlands reported four deaths in six patients with false-negative results [3]. In the present paper, the overall false-negative rate was 5.8%, but the smaller and newer cohort of patients underwent a same-day protocol and had zero false-negatives. This may be attributable to the fact that biopsies were taken from a total sample of 65 or that slightly more nodes were taken in this group. We expect the one-day protocol to become standard, and future independent reports will be welcome. Should there truly be a 0% false-negative rate then the controversy is resolved and prophylactic ILND will become a historical procedure. Finally, the lower morbidity of the present study cohort allowed the authors to move the intermediate-risk group from surveillance to nodal biopsy, which proved justified because some of these cases had micrometastatic disease. We congratulate the group for their scientific approach to improving the quality of care for patients and for bringing their data to publication.

Paul K. Hegarty and Peter E. Lonergan
Urology, National Penile Cancer Centre, Mater Misericordiae University Hospital, Dublin, Ireland

 

References

 

1 Dimopoulos P, Christopoulos P, Shilito S et al. Dynamic sentinel lymph node biopsy for penile cancer: a comparison between 1- and 2-day protocols. BJU Int 2016; 117: 8906

 

2 Hegarty PK, Eardley I, Heidenreich A et al. Penile cancer: Organ-sparing techniques. BJU Int 2014; 114: 799805

 

3 Kroon BK, Horenblas S, Meinhardt W et al. Dynaminc sentinel node biopsy in penile cancer: evaluation of 10 years experience. Eur Urol 2005; 47: 6016

 

Article of the Week: Assessing extranodal extension and the size of the largest lymph node metastasis after RP

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

If you only have time to read one article this week, it should be this one.

Prognosis of patients with pelvic lymph node metastasis following radical prostatectomy: value of extranodal extension and size of the largest lymph node metastasis

Niccolo M. Passoni, Harun Fajkovic*, Evanguelos Xylinas†, Luis Kluth‡, Christian Seitz*, Brian D. Robinson§, Morgan Rouprêt¶, Felix K. Chun‡, Yair Lotan**, Claus G. Roehrborn**, Joseph J. Crivelli§, Pierre I. Karakiewicz††, Douglas S. Scherr§, Michael Rink‡, Markus Graefen‡, Paul Schramek*, Alberto Briganti, Francesco Montorsi, Ashutosh Tewari§ and Shahrokh F. Shariat*§**

Department of Urology, Urological Research Institute, University Vita-Salute San Raffaele, Milan, Italy, *Department of Urology, Medical University of Vienna, Vienna, Austria, †Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Descartes, ¶Academic Department of Urology of la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Faculté de medicine Pierre et Marie Curie, University Paris VI, Paris, France, ‡Medical Centre Hamburg-Eppendorf, Martini Clinic, Prostate Cancer Center at University Medical Center Hamburg-Eppendorf, Hamburg, Germany, §Department of Urology and Pathology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, **Department of Urology, Southwestern Medical Center, University of Texas, Dallas, TX, USA, and ††Department of Urology, University of Montreal, Montreal, QC, Canada

OBJECTIVE
  • To assess the prognostic role of extranodal extension (ENE) and the size of the largest lymph node (LN) metastasis in predicting early biochemical relapse (eBCR) in patients with LN metastasis after radical prostatectomy (RP).
PATIENTS AND METHODS
  • We evaluated BCR-free survival in men with LN metastases after RP and pelvic LN dissection performed in six high-volume centres.
  • Multivariable Cox regression tested the role of ENE and diameter of largest LN metastasis in predicting eBCR after adjusting for clinicopathological variables.
  • We compared the discrimination of multivariable models including ENE, the size of largest LN metastasis and the number of positive LNs.
RESULTS
  • Overall, 484 patients were included. The median (interquartile range, IQR) follow-up was 16.1 (6–27.5) months. The median (IQR) number of removed LNs was 10 (4–14), and the median (IQR) number of positive LNs was 1 (1–2).
  • ENE was present in 280 (58%) patients, and 211 (44%) had their largest metastasis >10 mm. Patients with ENE and/or largest metastasis of >10 mm had significantly worse eBCR-free survival (all P < 0.01).
  • On multivariable analysis, number of positive LNs (≤2 vs >2) and the diameter of LN metastasis (≤10 vs >10 mm), but not ENE, were significant predictors of eBCR (all P < 0.003).
  • ENE and diameter of LN metastasis increased the area under the curve of a baseline multivariable model (0.663) by 0.016 points.
CONCLUSIONS
  • The diameter of the largest LN metastasis and the number of positive LNs are independent predictors of eBCR.
  • Considered together, ENE and the diameter of the largest LN metastasis have less discrimination than the number of positive LNs.

Editorial: Extent of lymph node metastases

The role of prostatectomy in lymph node metastasized prostate cancer has been subject to changing opinions. Classically, a nodal dissection was performed as the initial step in the procedure and prostatectomy was avoided in men with cryosection-proven metastases. Biochemical recurrence during the first 3 years occurs in the majority of men with pN1 disease [1]. Early data from randomized trials shows only a 50% prostate cancer-specific survival 12 years after prostatectomy and nodal metastases without immediate adjuvant treatment [2]. Recently, Passoni et al. [3] showed a higher 10-year overall survival of 82.8% in men with nodal metastases, of whom the majority were treated with adjuvant androgen ablation and/or radiotherapy. This percentage is remarkably similar to the treatment arm of the earlier-mentioned study reported by Messing et al. [2], which showed a 10-year disease-specific survival of >80%. At 10 years about half the patients who died, did so from prostate cancer; therefore, although reasonable intermediate range survival can be obtained in men with nodal metastases of prostate cancer, the major cause of death remains prostate cancer when surgery is applied at the age of 65 years. Although adjuvant androgen ablation may improve survival, as suggested by the above-mentioned observations, some men may not experience recurrence after resection of nodal metastases and would experience the toxicity of androgen ablation unnecessarily. The identification of these men would reduce costs and toxicity.

Passoni et al. [3] presented a multicentre study on prognostic factors after prostatectomy for node-positive disease. The number of removed nodes (median 10) seems relatively low compared with the 17 reported in their earlier single-centre study, but may be a good reflection of urological practice in general. By comparison, the percentage of men who underwent adjuvant radiotherapy in the multicentre study was low (16%). Data from da Pozzo et al. [4] suggest that adjuvant radiotherapy may be of benefit in men with limited nodal metastases. It would be of interest to study whether men with a later biochemical recurrence would be those that did experience recurrence only locally and therefore would be those most likely to benefit from adjuvant (or salvage) radiotherapy.

In the current study by Passoni et al. [1] in the BJUI, the follow-up was relatively short (16 months). Earlier data from this author group showed that number of positive nodes and lymph node density were good predictors of cancer-specific survival after prostatectomy. This earlier observation is now confirmed in a multicentre analysis with a different endpoint: biochemical recurrence. What is notable is the fact that this confirmation was obtained in a series of patients with fewer nodes removed. The value of the marker ≤2 positive nodes becomes limited with the observation that this group contained 85% of men in their series. The second marker found, the size of the node, showed a more general distribution but as a single marker had no predictive value. The differences in Harrel’s c values from the base model containing other clinical characteristics are limited and reproducibility of measures needs attention. Still, the observation that extent of nodal metastases is of prognostic value after surgery is notable.

Ideally, markers could predict the absence of further disease progression in men after prostatectomy for nodal metastasized prostate cancer. None of the studied characteristics fulfill this need because at 36 months after prostatectomy the majority of men, even those in the best prognostic group, do experience biochemical recurrence that will result in prostate cancer-related death. Gleason score is a strong predictor of the presence of nodal metastases [5], and some have suggested that nodal Gleason grade is of prognostic value in men with pN+ disease. Until these markers have been further evaluated, it remains important to address the fact that reported cancer-specific survival in most men with pN+ disease is >10 years [6]. Although tempting to speculate that prostatectomy and (extended) lymph node dissection plays a role in this, the almost inevitable development of biochemical recurrence reported in the current study by Passoni et al. [1], even in patients in the best prognostic group, stresses the systemic nature of this disease which will require a multimodality approach in most men at some point.

Henk G. van der Poel

Department of Urology, Netherlands Cancer Institute, Amsterdam, The Netherlands

References

1 Passoni N, Fajkovic H, Xylinas E. Prognosis of patients with pelvic lymph node metastasis following radical prostatectomy: value of extranodal extension and size of the largest lymph node metastasis. BJU Int 2014; 114: 503–10

2 Messing EM, Manola J, Yao J et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol 2006; 7: 472–9

3 Passoni NM, Abdollah F, Suardi N et al. Head-to-head comparison of lymph node density and number of positive lymph nodes in stratifying the outcome of patients with lymph node-positive prostate cancer submitted to radical prostatectomy and extended lymph node dissection. Urol Oncol 2013; 29: 29.e21–8

4 Da Pozzo LF, Cozzarini C, Briganti A et al. Long-term follow-up of patients with prostate cancer and nodal metastases treated by pelvic lymphadenectomy and radical prostatectomy: the positive impact of adjuvant radiotherapy. Eur Urol 2009; 55: 1003–11

5 Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI. Do adenocarcinomas of the prostate with Gleason score (GS)</=6 have the potential to metastasize to lymph nodes? Am J Surg Pathol 2012; 36: 1346–52

6 Touijer KA, Mazzola CR, Sjoberg DD, Scardino PT, Eastham JA. Long-term outcomes of patients with lymph node metastasis treated with radical prostatectomy without adjuvant androgen-deprivation therapy. Eur Urol 2013; 65: 20–5

Article of the week: A protocol for transperineal sector biopsies of the prostate

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying editorial written by prominent members of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

If you only have time to read one article this week, it should be this one.

Indications, results and safety profile of transperineal sector biopsies (TPSB) of the prostate: a single centre experience of 634 cases

Lona Vyas, Peter Acher, Janette Kinsella, Ben Challacombe, Richard T.M. Chang, Paul Sturch, Declan Cahill, Ashish Chandra and Richard Popert

The Urology Centre, Guy’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

OBJECTIVE

• To describe a protocol for transperineal sector biopsies (TPSB) of the prostate and present the clinical experience of this technique in a UK population.

PATIENTS AND METHODS

• A retrospective review of a single-centre experience of TPSB approach was undertaken that preferentially, but not exclusively, targeted the peripheral zone of the prostate with 24–38 cores using a ‘sector plan’. Procedures were carried out under general anaesthetic in most patients.

• Between January 2007 and August 2011, 634 consecutive patients underwent TPSB for the following indications: prior negative transrectal biopsy (TRB; 174 men); primary biopsy in men at risk of sepsis (153); further evaluation after low-risk disease diagnosed based on a 12-core TRB (307).

RESULTS

• Prostate cancer was found in 36% of men after a negative TRB; 17% of these had disease solely in anterior sectors.

• As a primary diagnostic strategy, prostate cancer was diagnosed in 54% of men (median PSA level was 7.4 ng/mL).

• Of men with Gleason 3+3 disease on TRB, 29% were upgraded and went on to have radical treatment.

• Postoperative urinary retention occurred in 11 (1.7%) men, two secondary to clots. Per-urethral bleeding requiring hospital stay occurred in two men. There were no cases of urosepsis.

CONCLUSIONS

• TPSB of the prostate has a role in defining disease previously missed or under-diagnosed by TRB. The procedure has low morbidity.

 

Editorial: Is zero sepsis alone enough to justify transperineal prostate biopsy?

The landscape of infectious complications after TRUS-guided biopsy of the prostate has changed dramatically. While sepsis after TRUS-guided prostate biopsy has always been a concern for urologists performing this very common procedure, in the past couple of years a number of factors have added to these pre-existing concerns for urologists and patients alike.

First, key papers have reported the true incidence of sepsis and hospital re-admission after TRUS biopsy and have shown that these rates are increasing. Loeb et al. [1] reported that the 30-day re-admission rate in a Surveillance, Epidemiology and End Results (SEER)-Medicare population was 6.9% and that this rate is increasing. Nam et al. [2] similarly reported a 3.5-fold increase in hospital admissions after prostate biopsy in the previous 10 years, principally attributable to infection-related complications. These reports have been replicated around the world and there is consensus that this is a growing problem.

Second, there are increasing concerns about the emergence of resistant organisms, in particular, extended spectrum beta lactamase (ESBL), in regions where antibiotic use has contributed to the emergence of these strains [3]. Media attention has focused on this issue and has led to increased concerns among urologists and patients alike. It has also led to a requirement for extra precautions when assessing patients for prostate biopsy such that in some regions, rectal swabs are being taken to identify ESBL-carriers ahead of time. In a contemporary series, Taylor et al. [4] report that 19% of men undergoing transrectal prostate biopsy in Canada carry ciprofloxacin-resistant coliforms in rectal swabs. The thought of passing a needle through this flora into the prostate is somewhat disturbing; rectal swabs may become mandatory when offering a TRUS-guided biopsy to any patient and should absolutely be taken if planning a TRUS biopsy in someone who has travelled to South-East Asia in the preceding 6 months.

The Bloomberg News, in a well-researched report into antibiotic use in India and the emergence of resistant strains of Escherichia coli, reported some startling statistics about the overuse of antibiotics in that country, and described how the ‘perfect storm’ of antibiotic overuse, poverty and poor sanitation (half of the country’s 1.2 billion residents defaecate in the open), is contributing to the emergence of superbugs colonizing the gut of dwellers and visitors to India [5]. It is clear that even walking through a puddle in New Delhi puts a visitor at high risk of harbouring ESBL organisms in the rectum for many months after.

In this month’s BJUI, Vyas et al. [6] describe a consecutive series of 634 patients undergoing prostate biopsy at Guy’s Hospital in London using a transperineal template-guided approach, and report a sepsis rate of zero. They also report other notable factors including a 36% cancer detection rate in men who had previously undergone transrectal prostate biopsy with no evidence of malignancy and, in men on active surveillance for Gleason 6 prostate cancer, they observed upgrading to Gleason ≥7 cancer in 29% of cases after immediate re-staging biopsy using a transperineal approach. An even larger contemporary study from Pepe et al. [7] reports zero sepsis in a consecutive series of 3000 men undergoing transperineal prostate biopsy.

It is quite impossible to imagine such large series of prostate biopsies with no episodes of sepsis if performed using a transrectal approach. The documented increasing levels of ESBL and high levels of asymptomatic gut colonization, especially for those resident or travelling through South-East Asia, mean that adequate risk assessment and counselling of patients before TRUS biopsy is more important than ever before. A careful history regarding recent antibiotic use is also essential as previous recent use of quinolones is also a risk factor for infection after a transrectal biopsy [8].

While widespread adoption of a transperineal approach to prostate biopsy would have considerable resource and logistic issues, and inevitably would not be accepted by all urologists, the rising rate of infectious complications and of resistant organisms colonizing the rectum may mean that continuing with a transrectal approach becomes too risky and therefore unacceptable to patients and clinicians alike. While a transperineal approach also appears to add value in terms of more accurate staging and also facilitates the emerging interest in MRI fusion-guided biopsies and focal therapy, zero sepsis alone may be enough to convince many that a transrectal approach should no longer be preferred.

Declan G. Murphy*, Mahesha Weerakoon and Jeremy Grummet

*Division of Cancer Surgery, University of Melbourne, Peter MacCallum Cancer Centre, †Australian Prostate Cancer Research Centre, Epworth Richmond Hospital, and ‡Department of Urology, The Alfred Hospital, Melbourne, VIC, Australia

References

  1. Loeb S, Carter HB, Berndt SI, Ricker W, Schaeffer EM. Complications after prostate biopsy: data from SEER-Medicare. J Urol 2011; 186: 1830–1834
  2. Nam RK, Saskin R, Lee Y et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol 2010; 183: 963–968
  3. Williamson DA, Masters J, Freeman J, Roberts S. Travel-associated extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU Int 2012; 109: E21–22
  4. Taylor S, Margolick J, Abughosh Z et al. Ciprofloxacin resistance in the faecal carriage of patients undergoing transrectal ultrasound guided prostate biopsy. BJU Int 2013; 111: 946–953
  5. Gale JN, Narayan A. Drug-defying germs from India speed post-antibiotic era. 2012; Available at: https://www.bloomberg.com/news/2012-05-07/drug-defying-germs-from-india-speed-post-antibiotic-era.html. Accessed June 2014
  6. Pepe PA, Aragona F. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 2013; 81: 1142–1146
  7. Patel U, Dasgupta P, Amoroso P, Challacombe B, Pilcher J, Kirby R. Infection after transrectal ultrasonography-guided prostate biopsy: increased relative risks after recent international travel or antibiotic use. BJU Int 2012; 109: 1781–1785

 

Article of the Week: The New Partin Tables

Every week the Editor-in-Chief selects the Article of the Week from the current issue of BJUI. The abstract is reproduced below and you can click on the button to read the full article, which is freely available to all readers for at least 30 days from the time of this post.

In addition to the article itself, there is an accompanying blog written by a prominent member of the urological community. This blog is intended to provoke comment and discussion and we invite you to use the comment tools at the bottom of each post to join the conversation.

Finally, the third post under the Article of the Week heading on the homepage will consist of additional material or media. This week we feature a video of John Eifler and Alan Partin discussing their paper.

If you only have time to read one article this week, it should be this one.

 

An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011

John B. Eifler, Zhaoyang Feng, Brian M. Lin, Michael T. Partin, Elizabeth B. Humphreys, Misop Han, Jonathan I. Epstein, Patrick C. Walsh, Bruce J. Trock, Alan W. Partin

OBJECTIVE

• To update the 2007 Partin tables in a contemporary patient population.

PATIENTS AND METHODS

The study population consisted of 5,629 consecutive men who underwent RP and staging lymphadenectomy at the Johns Hopkins Hospital between January 1, 2006 and July 30, 2011 and met inclusion criteria.

• Polychotomous logistic regression analysis was used to predict the probability of each pathologic stage category: organ-confined disease (OC), extraprostatic extension (EPE), seminal vesicle involvement (SV+), or lymph node involvement (LN+) based on preoperative criteria.

• Preoperative variables included biopsy Gleason score (6, 3+4, 4+3, 8, and 9–10), serum PSA (0–2.5, 2.6–4.0, 4.1–6.0, 6.1–10.0, greater than 10.0 ng/mL), and clinical stage (T1c, T2c, and T2b/T2c).

• Bootstrap re-sampling with 1000 replications was performed to estimate 95% confidence intervals for predicted probabilities of each pathologic state.

RESULTS

• The median PSA was 4.9 ng/mL, 63% had Gleason 6 disease, and 78% of men had T1c disease.

• 73% of patients had OC disease, 23% had EPE, 3% had SV+ but not LN+, and 1% had LN+ disease. Compared to the previous Partin nomogram, there was no change in the distribution of pathologic state.

• The risk of LN+ disease was significantly higher for tumors with biopsy Gleason 9–10 than Gleason 8 (O.R. 3.2, 95% CI 1.3–7.6).

• The c-indexes for EPE vs. OC, SV+ vs. OC, and LN+ vs. OC were 0.702, 0.853, and 0.917, respectively.

• Men with biopsy Gleason 4+3 and Gleason 8 had similar predicted probabilities for all pathologic stages.

• Most men presenting with Gleason 6 disease or Gleason 3+4 disease have <2% risk of harboring LN+ disease and may have lymphadenectomy omitted at RP.

CONCLUSIONS

• The distribution of pathologic stages did not change at our institution between 2000–2005 and 2006–2011.

• The updated Partin nomogram takes into account the updated Gleason scoring system and may be more accurate for contemporary patients diagnosed with prostate cancer.

Erratum:

A typographical error was identified in Table 2, for the cell corresponding to the probability for EPE in a man with clinical stage T1c, PSA >10, and biopsy Gleason 4+3. The cell should read “38 (32-45)” rather than “28 (32-45).” Also, in the third paragraph of the Results section, the fourth sentence should be changed to “In contrast, the predicted risk of LN+ is no more than 3% for T1c tumours with biopsy Gleason score <9 for an PSA below 10.”

Editorial: What have we learned from the Partin table update?

The controversies surrounding a physician’s best treatment strategy advice to an individual patient with clinically localized prostate cancer create a continuing need for advanced statistics. Historically, the Partin tables [1] were one of the first statistical tools that physicians and patients found readily usable. The tables have been updated and always focused on prediction of pathologic stage from standard clinical variables. The next commonly cited/used tool was the Kattan nomogram [2] that carried the prediction the next step to the endpoint of biochemical relapse. By 2008, Shariat et al catalogued over 100 predictive tools published from 1966 to 2007 on various endpoints of prostate cancer [3].

 

 

 

What have we learned from this update of the Partin tables?

  1. The pre-operative grade distribution has shifted up slightly with no change in prostatectomy grade/stage distribution. The authors discuss possible causes such as changes in interpreting the Gleason scoring system, shifts in selection for surgery away from lower grade patients, and a possible plateau in stage migration.
  2. The tables have split off Gleason 3+4, 4+3, 8, and 9–10, and found the latter significantly more aggressive, while Gleason 4+3 and 4+4 are more similar. Gleason 9–10 must have a pattern 5 component >5% and may therefore have more aggressive biology. On the other hand, two cases of prostate cancer may have identical volumes of 4 pattern, but if one adds additional 3 pattern, that additional tumour foci paradoxically lowers the sum to 7, but perhaps not the risk of non-organ confined stage.
  3. In the past, the tables were commonly used to predict pT3 stage, with possible change in management away from surgery as that risk increased. Clearly the literature on surgery for higher risk disease has matured, and augmented by the adjuvant/salvage radiation literature such that it is less likely to use the tables for this reason any more. On the other hand, prediction of N1 disease for the purpose of omitting a lymph node dissection remains a useful tool. In this update, using a <2% cut-off you would essentially omit all node dissections in Gleason 6 with PSA < 10 and cT1c/cT2a, while continuing with a dissection for any dominant Gleason 4 pattern. It is noteworthy that this experience was largely based upon standard templates, and those advocating extended templates will find these N1 rates too low. Indeed, when our center adopted the extended template using a robotic technique, the N1 rate for high-risk disease was 39% and 9% for intermediate risk [4]. Moving forward, what tools do we need to provide useful statistics to our patients? Updating old tools with more contemporary patient cohorts is certainly a worthy exercise. Multicentre study based tools will be required for endpoints such as positive surgical margins, quality of life, biochemical recurrence, and other endpoints that may be significantly affected by the experience of the treating physician. Beyond this, the next step should be adaptive nomograms that update in real time rather than en masse every 4–5 years [5].

John W. Davis
Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

References
1 Eifler JB, Feng Z, Lin BM et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 2013; 111: 26–33
2 Kattan MW, Eastham JA, Stapleton AM et al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998; 90: 766–71
3 Shariat SF, Karakiewicz PI, Roehborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer 2008; 113: 3075–99
4 Davis JW, Shah JB, Achim M. Robot-assisted extended pelvic lymph node dissection (PLND) at the time of radical prostatectomy (RP): a video-based illustration of technique, results, and unmet patient selection needs. BJUI 2011; 108: 993–8
5 Vickers AJ, Fearn P, Scardino PT et al. Why can’t nomograms be more like Neflix? Urology 2010; 75: 511–3

John Eifler and Alan Partin discuss their article

An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011.

John B. Eifler, Zhaoyang Feng, Brian M. Lin, Michael T. Partin, Elizabeth B. Humphreys, Misop Han, Jonathan I. Epstein, Patrick C. Walsh, Bruce J. Trock and Alan W. Partin
James Buchanan Brady Urological Institute and the Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA

Objective

  • To update the 2007 Partin tables in a contemporary patient population.

Patients and Methods

The study population consisted of 5,629 consecutive men who underwent RP and staging lymphadenectomy at the Johns Hopkins Hospital between January 1, 2006 and July 30, 2011 and met inclusion criteria.

  • Polychotomous logistic regression analysis was used to predict the probability of each pathologic stage category: organ-confined disease (OC), extraprostatic extension (EPE), seminal vesicle involvement (SV+), or lymph node involvement (LN+) based on preoperative criteria.
  • Preoperative variables included biopsy Gleason score (6, 3+4, 4+3, 8, and 9–10), serum PSA (0–2.5, 2.6–4.0, 4.1–6.0, 6.1–10.0, greater than 10.0 ng/mL), and clinical stage (T1c, T2c, and T2b/T2c).
  • Bootstrap re-sampling with 1000 replications was performed to estimate 95% confidence intervals for predicted probabilities of each pathologic state.

Results

  • The median PSA was 4.9 ng/mL, 63% had Gleason 6 disease, and 78% of men had T1c disease.
  • 73% of patients had OC disease, 23% had EPE, 3% had SV+ but not LN+, and 1% had LN+ disease. Compared to the previous Partin nomogram, there was no change in the distribution of pathologic state.
  • The risk of LN+ disease was significantly higher for tumors with biopsy Gleason 9–10 than Gleason 8 (O.R. 3.2, 95% CI 1.3–7.6).
  • The c-indexes for EPE vs. OC, SV+ vs. OC, and LN+ vs. OC were 0.702, 0.853, and 0.917, respectively.
  • Men with biopsy Gleason 4+3 and Gleason 8 had similar predicted probabilities for all pathologic stages.
  • Most men presenting with Gleason 6 disease or Gleason 3+4 disease have <2% risk of harboring LN+ disease and may have lymphadenectomy omitted at RP.

Conclusions

  • The distribution of pathologic stages did not change at our institution between 2000–2005 and 2006–2011.
  • The updated Partin nomogram takes into account the updated Gleason scoring system and may be more accurate for contemporary patients diagnosed with prostate cancer.

Eifler JB, Feng Z, Lin BM, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int 2013; 111: 26–33.

© 2020 BJU International. All Rights Reserved.